Bundles
Why Bundles
Section titled “Why Bundles”Python ML libraries often have conflicting dependency requirements. Models using trust_remote_code=True may depend on specific transformers versions. SIE solves this with bundles. Each bundle is a self-contained environment with compatible dependencies.
For example:
sentence-transformersrequirestransformers>=4.57GritLM/GritLM-7Brequirestransformersbefore version 4.54- These cannot coexist in the same environment
Bundles group models with compatible dependencies into separate Docker images.
Available Bundles
Section titled “Available Bundles”| Bundle | Purpose | Key Models |
|---|---|---|
default | Standard models | BGE-M3, E5, Qwen3, GLiNER, ColBERT |
legacy | Older transformers (before 4.56) | Stella, GritLM-7B |
gte-qwen2 | Alibaba GTE models | gte-Qwen2-1.5B, gte-Qwen2-7B |
sglang | Large LLM embeddings | Qwen3-4B+, E5-Mistral-7B, NV-Embed |
florence2 | Vision-language models | Florence-2, Donut |
Bundle Contents
Section titled “Bundle Contents”default
Section titled “default”The default bundle includes most models using transformers>=4.57. This is the recommended starting point.
Included models:
- Dense:
BAAI/bge-m3,intfloat/e5-*,Alibaba-NLP/gte-multilingual-base - Qwen3:
Qwen/Qwen3-Embedding-0.6B,Qwen/Qwen3-Embedding-4B - 7B models:
intfloat/e5-mistral-7b-instruct,Salesforce/SFR-Embedding-* - NVIDIA:
nvidia/NV-Embed-v2,nvidia/llama-embed-nemotron-8b - Sparse: OpenSearch neural sparse, SPLADE variants, Granite sparse
- ColBERT:
jinaai/jina-colbert-v2,answerdotai/answerai-colbert-small-v1 - NER: GLiNER models, GLiREL relation extraction
legacy
Section titled “legacy”Models requiring older transformers versions (before 4.56). Use when you need Stella or GritLM.
Included models:
dunzhang/stella_en_1.5B_v5dunzhang/stella_en_400M_v5GritLM/GritLM-7B
gte-qwen2
Section titled “gte-qwen2”Alibaba GTE-Qwen2 models with DynamicCache API compatibility requirements.
Included models:
Alibaba-NLP/gte-Qwen2-1.5B-instructAlibaba-NLP/gte-Qwen2-7B-instruct
sglang
Section titled “sglang”Large LLM embedding models (4B+ parameters) using SGLang backend for memory efficiency.
Included models:
Qwen/Qwen3-Embedding-4B,qwen3-embedding-8bAlibaba-NLP/gte-Qwen2-7B-instructintfloat/e5-mistral-7b-instructLinq-AI-Research/Linq-Embed-MistralSalesforce/SFR-Embedding-Mistral,Salesforce/SFR-Embedding-2_Rnvidia/llama-embed-nemotron-8b
florence2
Section titled “florence2”Microsoft Florence-2 and Donut vision-language models. Requires timm for the DaViT vision encoder.
Included models:
microsoft/Florence-2-base,microsoft/Florence-2-largemicrosoft/Florence-2-base-ftmynkchaudhry/Florence-2-FT-DocVQAnaver-clova-ix/donut-base-finetuned-cord-v2(receipt parsing)naver-clova-ix/donut-base-finetuned-docvqa(document QA)naver-clova-ix/donut-base-finetuned-rvlcdip(document classification)
Docker Images
Section titled “Docker Images”Each bundle has a corresponding Docker image tag. One image per bundle.
# Default bundle (recommended)docker run -p 8080:8080 ghcr.io/superlinked/sie:default
# With GPUdocker run --gpus all -p 8080:8080 ghcr.io/superlinked/sie:default
# Legacy bundle for Stella/GritLMdocker run --gpus all -p 8080:8080 ghcr.io/superlinked/sie:legacy
# GTE-Qwen2 bundledocker run --gpus all -p 8080:8080 ghcr.io/superlinked/sie:gte-qwen2
# SGLang bundle for large LLM modelsdocker run --gpus all -p 8080:8080 ghcr.io/superlinked/sie:sglang
# Florence-2 bundle for vision modelsdocker run --gpus all -p 8080:8080 ghcr.io/superlinked/sie:florence2Bundle Selection
Section titled “Bundle Selection”Choose a bundle based on the models you need:
- Start with
default- covers most use cases with 60+ models - Use
legacyif you need Stella or GritLM-7B - Use
gte-qwen2for Alibaba GTE-Qwen2 instruction models - Use
sglangfor memory-efficient large LLM embeddings - Use
florence2for document understanding and OCR
Models are loaded on first request. The bundle only determines which models are available.
What’s Next
Section titled “What’s Next”- Model Catalog - complete list of supported models
- Deployment - production deployment guides